References and Notes
<A NAME="RA44607ST-1">1</A>
Hoveyda AH.
Chem. Commun.
2004,
1779
<A NAME="RA44607ST-2">2</A>
Kabbara J.
Flemming S.
Nickisch K.
Neh H.
Westermann J.
Tetrahedron
1995,
51:
743
<A NAME="RA44607ST-3A">3a</A>
Pearson RG.
J. Am. Chem. Soc.
1963,
85:
3533
<A NAME="RA44607ST-3B">3b</A>
Pearson RG.
Struct. Bonding
1993,
80:
1
<A NAME="RA44607ST-4">4</A>
Green J.
Woodward S.
Synlett
1995,
155
<A NAME="RA44607ST-5">5</A>
Woodward S.
Tetrahedron
2002,
58:
1017
<A NAME="RA44607ST-6">6</A>
Bennett SMW.
Brown SM.
Conole G.
Dennis MR.
Fraser PK.
Radojevic S.
McPartlin M.
Topping CM.
Woodward S.
J. Chem. Soc., Perkin Trans. 1
1999,
3127
<A NAME="RA44607ST-7">7</A>
Bennett SMW.
Brown SM.
Muxworthy JP.
Woodward S.
Tetrahedron Lett.
1999,
40:
1767
<A NAME="RA44607ST-8">8</A>
Kodama H.
Okazaki A.
Segi A.
Shimotsuji A.
Ohta T.
Furukawa I.
Sci. Eng. Rev. Doshisha Univ.
2000,
41:
102 ; Chem. Abstr. 2000, 133, 237651
<A NAME="RA44607ST-9A">9a</A>
Zhang W.
Shi M.
Synlett
2007,
19
<A NAME="RA44607ST-9B">9b</A>
Shi M.
Wang C.-J.
Zhang W.
Chem. Eur. J.
2004,
10:
5507
<A NAME="RA44607ST-10">10</A>
Bennett SMW.
Brown SM.
Cunningham A.
Dennis MR.
Muxworthy JP.
Oakley MA.
Woodward S.
Tetrahedron
2000,
56:
2847
<A NAME="RA44607ST-11">11</A>
Woodward S.
Chem. Soc. Rev.
2000,
29:
393
<A NAME="RA44607ST-12">12</A>
Calculations were carried out using Spartan (www.wavefun.com) for Mac ‘02 to generate
equilibrium geometries at using the semi-empirical PM3; Chapron, A. unpublished results.
<A NAME="RA44607ST-13">13</A>
The CSD database was accessed via: www.ccdc.cam.ac.uk.
<A NAME="RA44607ST-14">14</A>
House HO.
Chu C.-Y.
Wilkins JM.
Umen MJ.
J. Org. Chem.
1975,
40:
1460
<A NAME="RA44607ST-15">15</A>
Fraser PK.
Woodward S.
Chem. Eur. J.
2003,
9:
776
<A NAME="RA44607ST-16">16</A>
Mizutani H.
Degrado SJ.
Hoveyda AH.
J. Am. Chem. Soc.
2002,
124:
779
<A NAME="RA44607ST-17">17</A> Review:
Kagan HB.
Girard C.
Guillaneux D.
Rainford D.
Samuel O.
Zhang SY.
Zhao SH.
Acta Chem. Scand.
1996,
50:
345 ; and references therein
<A NAME="RA44607ST-18">18</A>
The transition states G/H are conjectures; they could not be attained by PM3 calculation.
<A NAME="RA44607ST-19">19</A>
The enolates were prepared by the chemistry of ref. 15. Neat Ac2O (2.5 equiv) was added and the temperature raised from -45 to +6 °C over 6 h.
(
Z
)-(3
S
)-1,3-Dimethyloct-1-enyl Acetate
1H NMR (400.1 MHz, CDCl3): δ = 0.87 (3 H, t, J = 7.2 Hz, CH2
Me), 0.91 (3 H, d, J = 6.7 Hz, CHMe), 1.19-1.39 [8 H, m, -(CH2)4-], 1.87 (3 H, d, J = 0.9 Hz, =CMe), 2.17 (3 H, s, COMe), 2.34 (1 H, m, CHMe), 4.77 (1 H, dd, J = 9.8, 0.9 Hz, =CH). Irradiation of the olefinic =CH signal (δ = 4.77 ppm) produced
a 3.6% NOE at the enol methyl (δ = 1.87 ppm) consistent with a Z double-bond geometry. 13C NMR (100.6 MHz, CDCl3): δ = 15.5 (Me), 19.5 (Me), 21.1 (Me), 22.7 (CH2), 27.0 (CH2), 30.6 (CH), 32.0 (CH2), 37.2 (CH2), 123.4 (=CH), 143.8 (=COAc), 169.1 (C=O). IR (CHCl3): νmax = 1741 (C=O) cm-1. HRMS (EI): m/z calcd for C12H22O2 [M]: 198.1620; found [M+]: 198.1620.
(
E
)-(3
S
)-1,3-Dimethyloct-1-enyl Acetate
1H NMR (400.1 MHz, CDCl3): δ = 0.88 (3 H, t, J = 7.2 Hz, CH2
Me), 0.98 (3 H, d, J = 6.7 Hz, CHMe), 1.19-1.39 [8 H, m, -(CH2)4-], 1.84 (3 H, d, J = 0.9, =CMe), 2.09 (3 H, s, COMe), 2.34 (1 H, m, CHMe), 4.88 (1 H, dd, J = 10.1, 0.9 Hz, =CH). Irradiation of the olefinic =CH signal (δ = 4.88 ppm) produced
only a 1.7% NOE at the C(3) methyl (δ = 0.91 ppm) consistent with an E double-bond geometry. 13C NMR (100.6 MHz, CDCl3): δ = 14.1 (Me), 20.7 (Me), 21.3 (Me), 22.7 (CH2), 27.1 (CH2), 31.9 (CH), 32.0 (CH2), 37.7 (CH2), 123.9 (=CH), 144.4 (=COAc), 169.6 (C=O). IR (CHCl3): νmax = 1741 (C=O) cm-1. HRMS (EI): m/z calcd for C12H22O2 [M]: 198.1620; found [M+]: 198.1602.
<A NAME="RA44607ST-20A">20a</A>
Jeffery EA.
Meisters A.
Mole T.
J. Organomet. Chem.
1974,
74:
365
<A NAME="RA44607ST-20B">20b</A>
Bagnell L.
Jeffery EA.
Meisters A.
Mole T.
Aust. J. Chem.
1975,
28:
801
<A NAME="RA44607ST-21">21</A>
Albrow V.
Biswas K.
Crane A.
Chaplin N.
Easun T.
Gladiali S.
Lygo B.
Woodward S.
Tetrahedron: Asymmetry
2003,
14:
2813
<A NAME="RA44607ST-22">22</A> For CuTC = Copper(I) thiophene-2-carboxylate, see:
Allred GD.
Liebeskind LS.
J. Am. Chem. Soc.
1996,
118:
2748
<A NAME="RA44607ST-23">23</A>
Feringa BL.
Acc. Chem. Res.
2000,
33:
346
<A NAME="RA44607ST-24">24</A>
Alexakis A.
Rosset S.
Allamand J.
March S.
Guillen F.
Benhain C.
Synlett
2001,
1375
<A NAME="RA44607ST-25">25</A>
Alexakis A.
Albrow V.
Biswas K.
d’Augustin M.
Prieto O.
Woodward S.
Chem. Commun.
2005,
2843
<A NAME="RA44607ST-26">26</A>
Albrow VE.
Blake AJ.
Fryatt R.
Wilson C.
Woodward S.
Eur. J. Org. Chem.
2006,
2549
<A NAME="RA44607ST-27">27</A>
Riant O.
Argouarch G.
Guillaneux D.
Samuel O.
Kagan HB.
J. Org. Chem.
1998,
63:
3511 ; and references within
<A NAME="RA44607ST-28A">28a</A>
Jensen JF.
Johannsen M.
Org. Lett.
2003,
5:
3025
<A NAME="RA44607ST-28B">28b</A>
Cotton HK.
Huerta FF.
Bäckvall J.-E.
Eur. J. Org. Chem.
2003,
2756 ; and references therein
<A NAME="RA44607ST-29">29</A>
Luetkens ML.
Sattelberger AP.
Murray HH.
Basil JD.
Fackler JP.
Inorg. Synth.
1990,
28:
305
<A NAME="RA44607ST-30A">30a</A>
Kumar PGA.
Dotta P.
Hermatschweiler R.
Pregosin PS.
Albinati A.
Rizzato S.
Organometallics
2005,
24:
1306 ; and references within
<A NAME="RA44607ST-30B">30b</A>
Hölscher M.
Franciò G.
Leitner W.
Organometallics
2004,
23:
5606
<A NAME="RA44607ST-30C">30c</A>
Huber D.
Mezzetti A.
Tetrahedron: Asymmetry
2004,
15:
2193
<A NAME="RA44607ST-31">31</A>
Jagger M.
Richards K. In
Let it Bleed
Decca-ABKCO;
UK:
1969.
Reviews:
<A NAME="RA44607ST-32A">32a</A>
Kaminsky W.
J. Polym. Sci., Part A: Polym. Chem.
2004,
42:
3911
<A NAME="RA44607ST-32B">32b</A>
Brintzinger HH.
Fischer D.
Muelhaupt R.
Rieger B.
Waymouth RM.
Angew. Chem., Int. Ed. Engl.
1995,
34:
1143
<A NAME="RA44607ST-33A">33a</A>
Zurek E.
Ziegler T.
Prog. Polym. Sci.
2004,
29:
107
<A NAME="RA44607ST-33B">33b</A>
Bryant PL.
Harwell CR.
Mrse AA.
Emery EF.
Gan Z.
Caldwell T.
Reyes AP.
Kuhns P.
Hoyt DW.
Simeral LS.
Hall RW.
Butler LG.
J. Am. Chem. Soc.
2001,
123:
12009
<A NAME="RA44607ST-33C">33c</A>
Hanawa H.
Abe N.
Marouka K.
Tetrahedron Lett.
1999,
40:
5365
<A NAME="RA44607ST-34A">34a</A>
Yousef RI.
Walfort B.
Ruffer T.
Wagner C.
Schmidt H.
Herzog R.
Steinborn D.
J. Organomet. Chem.
2005,
690:
1178
<A NAME="RA44607ST-34B">34b</A>
Tammiku-Taul J.
Burk P.
Tuulmets A.
J. Phys. Chem. A
2005,
108:
133
<A NAME="RA44607ST-34C">34c</A>
Allen PEM.
Hagiass S.
Mair C.
Williams EH.
Ber. Bunsen-Ges. Phys. Chem.
1984,
88:
623
<A NAME="RA44607ST-35">35</A>
Börner C.
Gimeno J.
Gladiali S.
Goldsmith PJ.
Ramazzotti D.
Woodward S.
Chem. Commun.
2000,
2433
<A NAME="RA44607ST-36A">36a</A>
Bäckvall J.-E.
Sellén M.
J. Chem. Soc., Chem. Commun.
1987,
827
<A NAME="RA44607ST-36B">36b</A>
Bäckvall J.-E.
Sellén M.
Grant B.
J. Am. Chem. Soc.
1990,
112:
6615
<A NAME="RA44607ST-36C">36c</A>
Persson ESM.
Bäckvall J.-E.
Acta Chem. Scand.
1995,
49:
899
<A NAME="RA44607ST-36D">36d</A>
Karlström ASE.
Bäckvall J.-E.
Chem. Eur. J.
2001,
7:
1981
<A NAME="RA44607ST-37">37</A>
I am indebted to Prof. D. Gillheany (UCD, Ireland) for this advice; he assures me
it arose in the K. B. Sharpless group in the 1990s. It’s not always true, but is commonly
observed.
<A NAME="RA44607ST-38">38</A>
Goldsmith P.
Woodward S.
Angew. Chem. Int. Ed.
2005,
44:
2235
<A NAME="RA44607ST-39">39</A>
Evans DF.
Fazakerley GV.
J. Chem. Soc. A
1971,
182
<A NAME="RA44607ST-40">40</A>
Blake AJ.
Shannon J.
Stephens JC.
Woodward S.
Chem. Eur. J.
2007,
13:
2462
<A NAME="RA44607ST-41">41</A>
Foster DF.
Cole-Hamilton DJ.
Inorg. Synth.
1997,
31:
29
<A NAME="RA44607ST-42">42</A> CSD structure reference codes: Me3Al·NMe3 (DOCQOB); (Me3Al)2·DABCO (JOMBOC); (Me3Al)2·TMEDA (JUBHAP); Me3Al·(quinuclidine) (TMQUAL). See also:
Schumann H.
Wassermann BC.
Schutte S.
Heymer B.
Nickel S.
Seuß TD.
Wernik S.
Demtshuk J.
Girgsdies F.
Wiemann R.
Z. Anorg. Allg. Chem.
2000,
626:
2081 ; and references therein
<A NAME="RA44607ST-43">43</A>
Bradford AM.
Bradley DC.
Hursthouse MB.
Motevalli M.
Organometallics
1992,
11:
111
<A NAME="RA44607ST-44A">44a</A>
Pagenkopf BL.
Carreira EM.
Tetrahedron Lett.
1998,
39:
9593
<A NAME="RA44607ST-44B">44b</A>
You JS.
Hsieh SH.
Gau H.-M.
Chem. Commun.
2001,
1546
<A NAME="RA44607ST-45">45</A>
Ichiyanagi T.
Kuniyama S.
Shimizu M.
Fujisawa T.
Chem. Lett.
1998,
1033
<A NAME="RA44607ST-46A">46a</A>
Biswas K.
Prieto O.
Goldsmith P.
Woodward S.
Angew. Chem. Int. Ed.
2005,
44:
2232
<A NAME="RA44607ST-46B">46b</A>
Mata Y.
Diéguez M.
Pàmies O.
Woodward S.
J. Org. Chem.
2006,
71:
8159
<A NAME="RA44607ST-47">47</A>
My sincere thanks to both Charles Davis (of Sigma-Aldrich) and John Blacker (at NPILPharma)
for their advice and insights into the world of commercial chemistry. DABAL is now
available from Sigma-Aldrich (catalogue no. 68210-1 DABAL-trimethylaluminium).
<A NAME="RA44607ST-48">48</A>
Biswas K.
Chapron A.
Cooper T.
Fraser PK.
Novak A.
Prieto O.
Woodward S.
Pure Appl. Chem.
2006,
78:
511
<A NAME="RA44607ST-49">49</A>
Cooper T.
Novak A.
Humphreys LD.
Walker MD.
Woodward S.
Adv. Synth. Catal.
2006,
348:
691
<A NAME="RA44607ST-50">50</A>
Novak A.
Humphreys LD.
Walker MD.
Woodward S.
Tetrahedron Lett.
2006,
47:
5767
<A NAME="RA44607ST-51">51</A>
El Hajjaji, S.; Woodward, S. unpublished results.
Reviews of Pd-catalysed allylation:
<A NAME="RA44607ST-52A">52a</A>
Trost BM.
Van Vranken DL.
Chem. Rev.
1996,
96:
395
<A NAME="RA44607ST-52B">52b</A>
Braun M.
Meier T.
Synlett
2006,
661
<A NAME="RA44607ST-53A">53a</A>
Kurosawa H.
Ohnishi H.
Emoto M.
Chatani N.
Kawasaki Y.
Murai S.
Ikeda I.
Organometallics
1990,
9:
3038
<A NAME="RA44607ST-53B">53b</A>
Wada M.
Wakabayashi T.
J. Organomet. Chem.
1975,
96:
301
<A NAME="RA44607ST-53C">53c</A>
Nobuyoshi N.
RajanBabu TV.
Tetrahedron. Lett.
1997,
38:
1713
<A NAME="RA44607ST-54">54</A>
Novak A.
Fryatt R.
Woodward S.
C. R. Chim.
2007,
10:
206
<A NAME="RA44607ST-55">55</A>
Novak, A.; Woodward, S. unpublished results.
<A NAME="RA44607ST-56">56</A>
Clarke AC.
Profiles of the Future
Pan;
London:
1964.
Chap. 2.
p.30-39